JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens.

We employed a comparative genomic approach to understand protein phosphatase 2C (PP2C)-mediated abscisic acid (ABA) signaling in the moss Physcomitrella patens. Ectopic expression of Arabidopsis (Arabidopsis thaliana) abi1-1, a dominant mutant allele of ABI1 encoding a PP2C involved in the negative regulation of ABA signaling, caused ABA insensitivity of P. patens both in gene expression of late embryogenesis abundant (LEA) genes and in ABA-induced protonemal growth inhibition. The transgenic abi1-1 plants showed decreased ABA-induced freezing tolerance, and decreased tolerance to osmotic stress. Analyses of the P. patens genome revealed that only two (PpABI1A and PpABI1B) PP2C genes were related to ABI1. In the ppabi1a null mutants, ABA-induced expression of LEA genes was elevated, and protonemal growth was inhibited with lower ABA concentration compared to the wild type. Moreover, ABA-induced freezing tolerance of the ppabi1a mutants was markedly enhanced. We provide the genetic evidence that PP2C-mediated ABA signaling is evolutionarily conserved between Arabidopsis and P. patens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app