Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

Crosstalk between adipose-derived stem/stromal cells and vocal fold fibroblasts in vitro.

Laryngoscope 2009 April
OBJECTIVES/HYPOTHESIS: To explore adipose-derived stem cell/fibroblast interactions as a potential remodeling pathway for vocal fold scar.

STUDY DESIGN: Fibroblasts and adipose-derived stem/stromal cells (ASCs) were cultured alone and in combination in a cell-contact-independent paracrine system. Analyses of cell proliferation, and the production of hyaluronic acid (HA) and collagen were performed on samples collected on days 1, 3, and 7.

METHODS: Normal fibroblasts (NFs) were isolated bilaterally from the subepithelial lamina propria of two normal ferret vocal folds. Scar fibroblasts (SFs) were isolated from vocal folds that were electrocauterized 2 weeks before harvest. ASCs were isolated from lipoaspirated subcutaneous abdominal fat of two ferrets. A transwell cell-contact-independent cell communication culturing system was used for coculture experiments. Cells were seeded at 50,000/well in both monoculture and coculture experiments.

RESULTS: In monoculture, SFs proliferated faster and produced less HA and more collagen than NFs at day 7 (P < .05). In SF/ASC coculture, SF proliferation was diminished and collagen production at day 7 decreased (P < .05). HA production did not differ between monoculture and coculture conditions.

CONCLUSIONS: Normal and scar-tissue-derived vocal fold fibroblasts maintain phenotypic differences in culture, thus validating this in vitro scar model. In co-culture, contact-independent crosstalk occurs between SFs and ASCa, leading to less collagen secretion. The data support the hypothesis that ASCs can induce favorable remodeling of scarred vocal folds in vivo by their interactions with endogenous fibroblasts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app