JOURNAL ARTICLE

Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit

Xiao-Dong Yang, Bo Huang, Mingxi Li, Acacia Lamb, Neil L Kelleher, Lin-Feng Chen
EMBO Journal 2009 April 22, 28 (8): 1055-66
19262565
Proper regulation of NF-kappaB activity is critical to maintain and balance the inflammatory response. Inactivation of the NF-kappaB complex relies in part on the proteasome-mediated degradation of promoter-bound NF-kappaB, but the detailed molecular mechanism initiating this process remains elusive. Here, we show that the methylation of the RelA subunit of NF-kappaB has an important function in this process. Lysine methyltransferase Set9 physically associates with RelA in vitro and in vivo in response to TNF-alpha stimulation. Mutational and mass spectrometric analyses reveal that RelA is monomethylated by Set9 at lysine residues 314 and 315 in vitro and in vivo. Methylation of RelA inhibits NF-kappaB action by inducing the proteasome-mediated degradation of promoter-associated RelA. Depletion of Set9 by siRNA or mutation of the RelA methylation sites prolongs DNA binding of NF-kappaB and enhances TNF-alpha-induced expression of NF-kappaB target genes. Together, these findings unveil a novel mechanism by which methylation of RelA dictates the turnover of NF-kappaB and controls the NF-kappaB-mediated inflammatory response.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
19262565
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"