COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis.
Chest 2009 June
BACKGROUND: Serum surfactant protein (SP) A and SP-D had prognostic value for mortality in patients with idiopathic pulmonary fibrosis (IPF) in prior studies before the reclassification of the idiopathic interstitial pneumonias. We hypothesized that baseline serum SP-A and SP-D concentrations would be independently associated with mortality among patients with biopsy-proven IPF and would improve a prediction model for mortality.
METHODS: We evaluated the association between serum SP-A and SP-D concentrations and mortality in 82 patients with surgical lung biopsy-proven IPF. Regression models with clinical predictors alone and clinical and biomarker predictors were used to predict mortality at 1 year.
RESULTS: After controlling for known clinical predictors of mortality, we found that each increase of 49 ng/mL (1 SD) in baseline SP-A level was associated with a 3.3-fold increased risk of mortality (adjusted hazard ratio, 3.27; 95% confidence interval, 1.49 to 7.17; adjusted p = 0.003) in the first year after presentation. We did not observe a statistically significant association between serum SP-D and mortality (adjusted hazard ratio, 2.04; p = 0.053). Regression models demonstrated a significant improvement in the 1-year mortality prediction model when serum SP-A and SP-D (area under the receiving operator curve [AROC], 0.89) were added to the clinical predictors alone (AROC, 0.79; p = 0.03).
CONCLUSIONS: Increased serum SP-A level is a strong and independent predictor of early mortality among patients with IPF. A prediction model containing SP-A and SP-D was substantially superior to a model with clinical predictors alone.
METHODS: We evaluated the association between serum SP-A and SP-D concentrations and mortality in 82 patients with surgical lung biopsy-proven IPF. Regression models with clinical predictors alone and clinical and biomarker predictors were used to predict mortality at 1 year.
RESULTS: After controlling for known clinical predictors of mortality, we found that each increase of 49 ng/mL (1 SD) in baseline SP-A level was associated with a 3.3-fold increased risk of mortality (adjusted hazard ratio, 3.27; 95% confidence interval, 1.49 to 7.17; adjusted p = 0.003) in the first year after presentation. We did not observe a statistically significant association between serum SP-D and mortality (adjusted hazard ratio, 2.04; p = 0.053). Regression models demonstrated a significant improvement in the 1-year mortality prediction model when serum SP-A and SP-D (area under the receiving operator curve [AROC], 0.89) were added to the clinical predictors alone (AROC, 0.79; p = 0.03).
CONCLUSIONS: Increased serum SP-A level is a strong and independent predictor of early mortality among patients with IPF. A prediction model containing SP-A and SP-D was substantially superior to a model with clinical predictors alone.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app