JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

A functional link between T-type calcium channels and mu-opioid receptor expression in adult primary sensory neurons.

The mu-opioid receptor agonists have a preferential effect on nociception in adults but their analgesic effect is less selective in neonates. Here we presented our finding that the mu-opioid receptor agonists had no effect on high voltage-activated Ca(2+) channels (HVACCs) in adult dorsal root ganglion (DRG) neurons that exhibited a prominent T-type Ca(2+) current. We also determined the mechanisms underlying the mu-opioid agonists' lack of effect on HVACCs in these neurons. The mu-opioid agonist [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO), morphine, and morphine 6-beta-D-glucuronide had no effect on either T-type or HVACC currents despite the presence of a large N-type Ca(2+) current in neurons with T-type Ca(2+) currents. DAMGO still had no effect on HVACC currents when T-type Ca(2+) channels were blocked in these neurons. However, intracellular dialysis of GTP-gamma-S to activate G proteins significantly attenuated HVACC currents. DRG neurons with T-type Ca(2+) currents showed little responses to capsaicin. Single-cell RT-PCR analysis revealed that the mu-opioid receptor mRNA was present only in adult DRG neurons lacking prominent T-type Ca(2+) currents. In the neonatal DRG, DAMGO inhibited HVACC currents in 31% neurons with T-type Ca(2+) currents. The mu-opioid receptor mRNA was detected in all neurons without T-type Ca(2+) currents and also in 28.6% of neurons with T-type Ca(2+) currents in the neonatal DRG. Our study provides novel information that adult DRG neurons with prominent T-type Ca(2+) currents do not express mu-opioid receptors. Expression of T-type Ca(2+) (Ca(V)3.2) channels and mu-opioid receptors may be developmentally co-regulated as some DRG neurons differentiate toward becoming nociceptive neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app