English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Effects of fullerene soot on the thermal decomposition and Fourier transform infrared spectrum of PEG].

Effects of fullerene soot (FS) on the thermal decomposition and Fourier transform infrared spectrum (FTIR) of polyethylene glycol (PEG, molecular weight= 20,000) were investigated by thermal analysis (TG-DTG) and in-situ FTIR experiments. The results of thermal analytical experiments showed that the addition of FS postponed not only the initial decomposition temperatures but also the temperatures at maximum decomposition rate of PEG. The maximum decomposition peak temperatures increased and the maximum decomposition rates were lowered even with the addition of 0.1%FS. The in-situ FTIR experiments proved that there was no difference between the IR spectra of PEG and PEG with 10%FS. There wasn't any new chemical band formed but Vander waals force between FS and PEG. Although the addition of FS didn't influence the constitution of decomposition products of PEG, it obviously increased the decomposition temperature and the decomposition rate of PEG. Through the researches on condensed phase and gaseous phase FTIR spectrum of PEG and PEG with 10%FS, one could see that the effect of FS on the condensed phase FTIR spectrum of PEG was not obvious, but the addition of FS markedly enhanced the occurrence temperatures of most gaseous decomposition products of PEG. These results showed that the effect of FS on thermal decomposition of PEG was through the absorbance and desorption of gaseous phase decomposition products. With the temperature elevated, the gaseous products were gradually desorbed from the activity centers and the decomposition of PEG continued. The thermal decomposition peak of PEG was moved toward hi gher temperature with the addition of FS than that without FS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app