Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tumor necrosis factor alpha-induced interleukin-32 is positively regulated via the Syk/protein kinase Cdelta/JNK pathway in rheumatoid synovial fibroblasts.

OBJECTIVE: Interleukin-32 (IL-32) is a recently discovered cytokine that appears to play a critical role in human rheumatoid arthritis (RA). It is highly expressed in synovium and fibroblast-like synoviocytes (FLS) from RA patients, but not in patients with osteoarthritis (OA). This study was undertaken to assess IL-32 levels in RA synovial fluid (SF) and to investigate the secretion and regulation of IL-32 in RA FLS.

METHODS: FLS and SF were obtained from the joints of RA patients. The secretion and expression of IL-32 and activation of signaling molecules were examined by enzyme-linked immunosorbent assay, immunoblotting, immunoprecipitation, reverse transcriptase-polymerase chain reaction, and small interfering RNA (siRNA) transfection.

RESULTS: IL-32 levels were high in RA SF compared with OA SF. Furthermore, RA FLS expressed and secreted IL-32 when stimulated with tumor necrosis factor alpha (TNFalpha). TNFalpha-induced expression of IL-32 was significantly suppressed, in a dose-dependent manner, by inhibitors of Syk, protein kinase Cdelta (PKCdelta), and JNK and by knockdown of these kinases and c-Jun with siRNA. We also observed that PKCdelta mediated the activation of JNK and c-Jun, and experiments using specific inhibitors and siRNA demonstrated that Syk was the upstream kinase for the activation of PKCdelta.

CONCLUSION: The present findings suggest that IL-32 may be a newly identified prognostic biomarker in RA, thereby adding valuable knowledge to the understanding of this disease. The results also demonstrate that the production of IL-32 in RA FLS is regulated by Syk/PKCdelta-mediated signaling events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app