JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Electrode array detector for microchip capillary electrophoresis.

Analyst 2009 March
Selectivity and resolution for analyses conducted using microfluidic devices can be improved by increasing the total number of individual detection elements in the device. Here, a poly(dimethylsiloxane) capillary electrophoresis microchip was fabricated with an integrated electrode array for selective detection of small molecules. Eight individually addressable gold electrodes were incorporated in series after a palladium current decoupler in the separation channel of an electrophoresis microchip. The electrode array device was characterized using a mixture of biologically relevant analytes and xenobiotics: norepinephrine, 4-aminophenol, acetaminophen, uric acid, and 3,4-dihydroxyphenylacetic acid. Separation efficiencies as high as 9000 +/- 1000 plates (n = 3) for 3,4-dihydroxyphenylacetic acid and limits of detection as low as 2.6 +/- 1.2 microM (n = 3) for norepinephrine were obtained using this device. After characterizing the performance of the device, potential step detection was conducted at the array electrodes and selective detection achieved based upon differences in redox potentials for individual analytes. Utilization of potential step detection was particularly advantageous for resolving co-migrating species; resolution of 3,4-dihydroxy-l-phenylalanine from acetaminophen using potential control was demonstrated. Finally, a human urine sample was analyzed using potential step detection to demonstrate the applicability of this device for complex sample analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app