OPEN IN READ APP
JOURNAL ARTICLE

Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients

Xavier Monnet, David Osman, Christophe Ridel, Bouchra Lamia, Christian Richard, Jean-Louis Teboul
Critical Care Medicine 2009, 37 (3): 951-6
19237902

OBJECTIVE: During mechanical ventilation, inspiration cyclically decreases the left cardiac preload. Thus, an end-expiratory occlusion may prevent the cyclic impediment in left cardiac preload and may act like a fluid challenge. We tested whether this could serve as a functional test for fluid responsiveness in patients with circulatory failure.

DESIGN: Prospective study.

SETTING: Medical intensive care unit.

PATIENTS: Thirty-four mechanically ventilated patients with shock in whom volume expansion was planned.

INTERVENTION: A 15-second end-expiratory occlusion followed by a 500 mL saline infusion.

MEASUREMENTS: Arterial pressure and pulse contour-derived cardiac index (PiCCOplus) at baseline, during passive leg raising (PLR), during the 5-last seconds of the end-expiratory occlusion, and after volume expansion.

MAIN RESULTS: Volume expansion increased cardiac index by >15% (2.4 +/- 1.0 to 3.3 +/- 1.2 L/min/m, p < 0.05) in 23 patients ("responders"). Before volume expansion, the end-expiratory occlusion significantly increased arterial pulse pressure by 15% +/- 15% and cardiac index by 12% +/- 11% in responders whereas arterial pulse pressure and cardiac index did not change significantly in nonresponders. Fluid responsiveness was predicted by an increase in pulse pressure >or=5% during the end-expiratory occlusion with a sensitivity and a specificity of 87% and 100%, respectively, and by an increase in cardiac index >or=5% during the end-expiratory occlusion with a sensitivity and a specificity of 91% and 100%, respectively. The response of pulse pressure and cardiac index to the end-expiratory occlusion predicted fluid responsiveness with an accuracy that was similar to the response of cardiac index to PLR and that was significantly better than the response of pulse pressure to PLR (receiver operating characteristic curves area 0.957 [95% confidence interval [CI:] 0.825-0.994], 0.972 [95% CI: 0.849-0.995], 0.937 [95% CI: 0.797-0.990], and 0.675 [95% CI: 0.497-0.829], respectively).

CONCLUSIONS: The hemodynamic response to an end-expiratory occlusion can predict volume responsiveness in mechanically ventilated patients.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
19237902
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"