Ultrafast intersystem crossing and spin dynamics of photoexcited perylene-3,4:9,10-bis(dicarboximide) covalently linked to a nitroxide radical at fixed distances

Emilie M Giacobbe, Qixi Mi, Michael T Colvin, Boiko Cohen, Charusheela Ramanan, Amy M Scott, Sina Yeganeh, Tobin J Marks, Mark A Ratner, Michael R Wasielewski
Journal of the American Chemical Society 2009 March 18, 131 (10): 3700-12
Time-resolved transient optical absorption and EPR (TREPR) spectroscopies are used to probe the interaction of the lowest excited singlet state of perylene-3,4:9,10-bis(dicarboximide) ((1*)PDI) with a stable tert-butylphenylnitroxide radical ((2)BPNO(*)) at specific distances and orientations. The (2)BPNO(*) radical is connected to the PDI with the nitroxide and imide nitrogen atoms either para (1) or meta (3) to one another, as well as through a second intervening p-phenylene spacer (2). Transient absorption experiments on 1-3 reveal that (1*)PDI undergoes ultrafast enhanced intersystem crossing and internal conversion with tau approximately = 2 ps to give structurally dependent 8-31% yields of (3*)PDI. Energy- and electron-transfer quenching of (1*)PDI by (2)BPNO(*) are excluded on energetic and spectroscopic grounds. TREPR experiments at high magnetic fields (3.4 T, 94 GHz) show that the photogenerated three-spin system consists of the strongly coupled unpaired electrons confined to (3*)PDI, which are each weakly coupled to the unpaired electron on (2)BPNO(*) to form excited doublet (D(1)) and quartet (Q) states, which are both spectrally resolved from the (2)BPNO(*) (D(0)) ground state. The initial spin polarizations of D(1) and Q are emissive for 1 and 2 and absorptive for 3, which evolve over time to the opposite spin polarization. The subsequent decays of D(1) and Q to ground-state spin polarize D(0). The rates of polarization transfer depend on the molecular connectivity between PDI and (2)BPNO(*) and can be rationalized in terms of the dependence on molecular structure of the through-bond electronic coupling between these species.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"