JOURNAL ARTICLE

Bayesian decision sequential analysis with survival endpoint in phase II clinical trials

Lili Zhao, George Woodworth
Statistics in Medicine 2009 April 30, 28 (9): 1339-52
19226557
Chen and Chaloner (Statist. Med. 2006; 25:2956-2966. DOI: 10.1002/sim.2429) present a Bayesian stopping rule for a single-arm clinical trial with a binary endpoint. In some cases, earlier stopping may be possible by basing the stopping rule on the time to a binary event. We investigate the feasibility of computing exact, Bayesian, decision-theoretic time-to-event stopping rules for a single-arm group sequential non-inferiority trial relative to an objective performance criterion. For a conjugate prior distribution, exponential failure time distribution, and linear and threshold loss structures, we obtain the optimal Bayes stopping rule by backward induction. We compute frequentist operating characteristics of including Type I error, statistical power, and expected run length. We also briefly address design issues.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19226557
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"