Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sequential effects of GSNO and H2O2 on the Ca2+ sensitivity of the contractile apparatus of fast- and slow-twitch skeletal muscle fibers from the rat.

Reactive oxygen species (ROS), such as hydrogen peroxide (H(2)O(2)) and nitric oxide (NO), have been shown to differentially alter the Ca(2+) sensitivity of the contractile apparatus of fast-twitch skeletal muscle, leading to the proposal that normal muscle function is controlled by perturbations in the amounts of these two groups of molecules (28). However, no previous studies have examined whether these opposing actions are retained when the contractile apparatus is subjected to both molecule types. Using mechanically skinned fast- and slow-twitch skeletal muscle fibers of the rat, we compared the effects of sequential addition of nitrosoglutathione (GSNO), a NO donor, and H(2)O(2) on the Ca(2+) sensitivity of the contractile apparatus. As expected from previous reports in fast-twitch fibers, when added separately, GSNO (1 mM) reduced the Ca(2+) sensitivity of the contractile apparatus, whereas H(2)O(2) (10 mM; added during contractions) increased the Ca(2+) sensitivity of the contractile apparatus. When added sequentially to the same fiber, such that the oxidation by one molecule (e.g., GSNO) preceded the oxidation by the other (e.g., H(2)O(2)), and vice versa, the individual effects of both molecules on the Ca(2+) sensitivity were retained. Interestingly, neither molecule had any effect on the Ca(2+) sensitivity of slow-twitch skeletal muscle. The data show that H(2)O(2) and GSNO retain the capacity to independently affect the contractile apparatus to modulate force. Furthermore, the absence of effects in slow-twitch muscle may further explain why this fiber type is relatively insensitive to fatigue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app