Add like
Add dislike
Add to saved papers

Investigations of mixing process in microfluidic manifold designed according to biomimetic rule.

Lab on a Chip 2009 March 8
The paper is focused on the mechanism of mixing process in a manifold which mimics the geometrical properties of vascular systems. The relationship governing the optimum ratio between the diameters of the parent and daughter branches in vascular systems was first discovered by Murray using the principle of minimum work. However, in contrast to biological vascular networks, which are composed of circular pipes, microfluidic manifolds are fabricated using a range of processes (photolithography, wet or dry etching, surface micromachining), which result in channels of rectangular or trapezoidal sections and constant depth throughout the device. The paper focuses on constant-depth rectangular channels often employed in lab-on-a-chip systems and provides comprehensive numerical studies of mixing in such geometry. It also presents simplified analytical estimation on how the coefficient of mixing depends on the number of generations and Reynolds number. The main goal of the paper is to describe the concept of a mixer which provides almost perfect mixing at the outlet regardless of the value of Re and for a minimal number of manifold's generations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app