JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma.

Epigenetic modification is one of the mechanisms leading to gene silencing in neoplastic cells. By methylation-specific PCR, we analyzed the promoter methylation of three cancer-related genes: Ras Association domain Family 1A (RASSF1A), Death Associated Protein kinase (DAP-kinase) and Retinoic Acid Receptor beta2 (RARbeta2) in two NPC xenografts (C15 and C17), 68 primary NPC tumors, and nine normal nasopharyngeal epithelia. We showed that C15 and C17 displayed a complete promoter methylation of RASSF1A, RARbeta2 and DAP-kinase genes. In primary NPC tumors, the incidence of promoter methylation was very high for all three tested genes: 91% for RASSF1A, 88% for both RARbeta2 and DAP-kinase whereas all normal nasopharyngeal epithelia were unmethylated. Interestingly, our study revealed that aberrant promoter methylation of the three genes were statistically associated with the lymph node involvement (p < 0.0001). In addition, hypermethylation of RASSF1A was correlated with age at diagnosis (p = 0.047) and T stage (p = 0.037) while the RARbeta2 hypermethylation was associated with histological type (p = 0.011). Taken together, our results demonstrate that silencing of RASSF1A and RARbeta2 expression by promoter hypermethylation is associated with highly differentiated tumors, advanced tumor stage and the presence of lymph node metastasis. To assess the functional significance of the epigenetic silencing of RARbeta2 and DAP-kinase in NPC, we analysed the expression of two downstream target genes COX-2 and p53 by reverse PCR (RT-PCR) and immunohistochemistry (IHC). We revealed a significant association between expression of COX-2 and loss of RARbeta2 through aberrant methylation (p = 0.003) in NPC biopsies. We concluded that the inactivation of RASSF1A, RARbeta2 and DAP-Kinase by hypermethylation is a key step in NPC tumorigenesis and progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app