JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer.

Carcinogenesis 2009 April
BTG3/ANA/APRO4 has been reported to be a tumor suppressor gene in some malignancies. It constitutes important negative regulatory mechanism for Src-mediated signaling, a negative regulator of the cell cycle and inhibits transcription factor E2F1. We report that BTG3 is downregulated in renal cancer and that the mechanism of inactivation is through promoter hypermethylation. Quantitative real-time polymerase chain reaction (PCR) showed that BTG3 was downregulated in cancer tissues and cells. Genistein and 5-aza-2'-deoxycytidine (5Aza-C) induced BTG3 messenger RNA (mRNA) expression in A498, ACHN and HEK-293 renal cell carcinoma (RCC) cell lines. Bisulfite-modified PCR and DNA sequencing results showed complete methylation of BTG3 promoter in tumor samples and cancer cell lines. Genistein and 5Aza-C treatment significantly decreased promoter methylation, reactivating BTG3 expression. Chromatin immunoprecipitation assay revealed that genistein and 5Aza-C increased levels of acetylated histones 3, 4, 2H3K4, 3H3K4 and RNA polymerase II at the BTG3 promoter indicative of active histone modifications. Enzymatic assays showed genistein and 5Aza-C decreased DNA Methyltransferase, methyl-CpG-binding domain 2 activity and increased HAT activity. Cell cycle and 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide cell proliferation assays showed that genistein has antiproliferative effect on cancer cell growth through induction of cell cycle arrest. This is the first report to show that BTG3 is epigenetically silenced in RCC and can be reactivated by genistein-induced promoter demethylation and active histone modification. Genistein had similar effects to that of 5Aza-C, which is a potent demethylating agent with high toxicity and instability. Genistein being a natural, non-toxic, dietary isoflavone is effective in retarding the growth of RCC cells, making it a promising candidate for epigenetic therapy in renal carcinoma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app