Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanical force inhibits osteoclastogenic potential of human periodontal ligament fibroblasts through OPG production and ERK-mediated signaling.

Periodontal ligament and gingival fibroblasts play important roles in bone remodeling. Periodontal ligament fibroblasts stimulate bone remodeling while gingival fibroblasts protect abnormal bone resorption. However, few studies had examined the differences in stimulation of osteoclast formation between the two fibroblast populations. The precise effect of mechanical forces on osteoclastogenesis of these populations is also unknown. This study revealed that more osteoclast-like cells were induced in the co-cultures of bone marrow cells with periodontal ligament than gingival fibroblasts, and this was considerably increased when anti-osteoprotegerin (OPG) antibody was added to the co-cultures. mRNA levels of receptor activator of nuclear factor-kappaB ligand (RANKL) were increased in both populations when they were cultured with dexamethasone and vitamin D(3). Centrifugal forces inhibited osteoclastogenesis of both populations, and this was likely related to the force-induced OPG up-regulation. Inhibition of extracellular signal-regulated kinase (ERK) signaling by a pharmacological inhibitor (10 microM PD98059) or by siERK transfection suppressed the force-induced OPG up-regulation along with the augmentation of osteoclast-like cells that were decreased by the force. These results suggest that periodontal ligament fibroblasts are naturally better at osteoclast induction than gingival fibroblasts, and that centrifugal force inhibited osteoclastogenesis of the periodontal fibroblasts through OPG production and ERK activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app