JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hemodynamic changes during resuscitation after burns using the Parkland formula.

Journal of Trauma 2009 Februrary
BACKGROUND: The Parkland formula (2-4 mL/kg/burned area of total body surface area %) with urine output and mean arterial pressure (MAP) as endpoints for the fluid resuscitation in burns is recommended all over the world. There has recently been a discussion on whether central circulatory endpoints should be used instead, and also whether volumes of fluid should be larger. Despite this, there are few central hemodynamic data available in the literature about the results when the formula is used correctly.

METHODS: Ten burned patients, admitted to our unit early, and with a burned area of >20% of total body surface area were investigated at 12, 24, and 36 hours after injury. Using transesophageal echocardiography, pulmonary artery catheterization, and transpulmonary thermodilution to monitor them, we evaluated the cardiovascular coupling when urinary output and MAP were used as endpoints.

RESULTS: Oxygen transport variables, heart rate, MAP, and left ventricular fractional area, did not change significantly during fluid resuscitation. Left ventricular end-systolic and end-diastolic area and global end-diastolic volume index increased from subnormal values at 12 hours to normal ranges at 24 hours after the burn. Extravascular lung water: intrathoracal blood volume ratio was increased 12 hours after the burn.

CONCLUSIONS: Preload variables, global systolic function, and oxygen transport recorded simultaneously by three separate methods showed no need to increase the total fluid volume within 36 hours of a major burn. Early (12 hours) signs of central circulatory hypovolemia, however, support more rapid infusion of fluid at the beginning of treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app