Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sensitization of imatinib-resistant CML cells to TRAIL-induced apoptosis is mediated through down-regulation of Bcr-Abl as well as c-FLIP.

Resistance to imatinib is commonly associated with reactivation of Bcr-Abl signalling. However, Bcr-Abl-independent signalling pathways may be activated and contributed to imatinib resistance in some CML (chronic myelogenous leukaemia) patients. We had isolated three imatinib-resistant K562/R1, R2 and R3 variants with gradual loss of Bcr-Abl from K562 cells to develop effective therapeutic strategies for imatinib-resistant CML. Interestingly, we found that these cells became highly sensitive to TRAIL (tumour necrosis factor-related apoptosis-inducing factor) in comparison with K562 cells showing high resistance to TRAIL. Treatment of K562/R3 cells with TRAIL resulted in activation of TRAIL receptor pathway by including caspase 8 activation, Bid cleavage, cytochrome c release and caspase 3 activation. These results were accompanied by down-regulation of c-FLIP {cellular FLICE [FADD (Fas-associated death domain)-like interleukin 1beta-converting enzyme]-inhibitory protein} in imatinib-resistant K562 variants compared with K562 cells. Overexpression of c-FLIP in K562/R3 cells acquired TRAIL resistance and conversely, c-FLIP-silenced K562 cells became sensitive to TRAIL. Moreover, Bcr-Abl-silenced K562 cells showed down-regulation of c-FLIP and the subsequent overcome of TRAIL resistance. Taken together, our results demonstrated for the first time that the loss of Bcr-Abl in imatinib-resistant cells led to the down-regulation of c-FLIP and subsequent increase of TRAIL sensitivity, suggesting that TRAIL could be an effective strategy for the treatment of imatinib-resistant CML with loss of Bcr-Abl.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app