JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology.

Organic micropollutants, with high toxicity and environmental concern, are present in the landfill leachate at much lower levels than total organic constituents (chemical oxygen demand (COD), biochemical oxygen demand (BOD), or total organic carbon (TOC)), and few has been known for their behaviors in different treatment processes. In this study, occurrence and removal of 17 organochlorine pesticides (OCPs), 16 polycyclic aromatic hydrocarbons (PAHs), and technical 4-nonylphenol (4-NP) in landfill leachate in a combined anaerobic-membrane bioreactor (MBR) were investigated. Chemical analyses were performed in leachates sampled from different treatment processes, using solid-phase extraction and gas chromatography with electron capture detector and mass spectrometry. Concentrations of OCPs, PAHs, and 4-NP in the raw leachate were detected within the range from ND (not detected) to 595.2 ng/L, which were as low as only 10(-7)-10(-5) percentage of TOC (at the concentration of 2,962 mg/L). The removal of 4-NP was mainly established in the MBR process, in agreement with removals of COD, BOD, and TOC. However, the removals of OCPs and PAHs were different, mainly achieved in the anaerobic process. High removal efficiencies of both total organic constituents and organic micropollutants could be achieved by the combined anaerobic-MBR technology. The removal efficiencies of total organic constituents were in the order of BOD (99%) > COD (89%) > TOC (87%), whereas the removal efficiencies of investigated organic micropollutants were as follows: OCPs (94%) > 4-NP (77%) > PAHs (59%).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app