Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells

Yan Cheng, Feng Qiu, Takashi Ikejima
Autophagy 2009, 5 (3): 430-1
Apoptosis and autophagy are genetically regulated, evolutionarily conserved processes that can jointly seal the fate of cancer cells. However, substantial gaps remain in our understanding of the molecular mechanisms that mediate the two cellular processes. In the present study, the exposure of murine fibrosarcoma L929 cells to oridonin led to the generation of intracellular reactive oxygen species (ROS) and, subsequently, the ROS triggered apoptosis by Bax translocation, cytochrome c release and ERK activations. In addition, oridonin induced autophagy in L929 cells, and the inhibition of autophagy by 3-MA or siRNA against LC3 and beclin 1 promoted oridonin-induced apoptosis. Furthermore, p38 and NFkappaB were confirmed to have roles in inhibiting apoptosis but promoting autophagy. Moreover, the inhibition of autophagy could reduce oridonin-induced activation of p38. Finally, NFkappaB activation was inhibited by blocking the p38 pathway. In conclusion, these findings indicate that oridonin-induced apoptosis can be regulated by ROS-mediated signaling pathways, and oridonin-induced autophagy may block apoptosis by upregulating p38 and NFkappaB activation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"