Edaravone, a free radical scavenger, protects against retinal damage in vitro and in vivo

Yuta Inokuchi, Shunsuke Imai, Yoshimi Nakajima, Masamitsu Shimazawa, Makoto Aihara, Makoto Araie, Hideaki Hara
Journal of Pharmacology and Experimental Therapeutics 2009, 329 (2): 687-98
Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, is used for the treatment of acute cerebral infarction. In this study, we investigated whether edaravone is neuroprotective against retinal damage. In vitro, we used a radical-scavenging capacity assay using reactive oxygen species-sensitive probes to investigate the effects of edaravone on H(2)O(2), superoxide anion (O(2)*), and hydroxyl radical (*OH) production in a rat retinal ganglion cell line (RGC-5). The effect of edaravone on oxygen-glucose deprivation (OGD)-induced RGC-5 damage was evaluated using a 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay of cell viability. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) significantly decreased radical generation and reduced the cell death induced by OGD stress. In vivo, retinal damage was induced by intravitreous injection of N-methyl-D-aspartate (NMDA; 5 nmol) and was evaluated by examining ganglion cell layer cell loss, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and the expressions of two oxidant-stress markers [4-hydroxy-2-nonenal (4-HNE) and 8-hydroxy-2-deoxyguanosine (8-OHdG)]. In addition, activations of mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated protein kinases (ERK), c-Jun NH(2)-terminal kinases (JNK), and p38 MAPK], as downstream signal pathways after NMDA receptor activation, were measured using immunoblotting and immunostaining. Edaravone at 5 and 50 nmol intravitreous injection or at 1 and 3 mg/kg i.v. significantly protected against NMDA-induced retinal cell death. At 50 nmol intravitreous injection, it 1) decreased the retinal expressions of TUNEL-positive cells, 4-HNE, and 8-OHdG and 2) reduced the retinal expressions of NMDA-induced phosphorylated JNK and phosphorylated p38 but not that of phosphorylated ERK. These findings suggest that oxidative stress plays a pivotal role in retinal damage and that edaravone may be a candidate for the effective treatment of retinal diseases.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"