JOURNAL ARTICLE

In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes

Wei-Hong Chen, Ming-Tang Lai, Alexander T H Wu, Chia-Che Wu, Juri G Gelovani, Che-Tong Lin, Shih-Chieh Hung, Wen-Ta Chiu, Win-Ping Deng
Arthritis and Rheumatism 2009, 60 (2): 450-9
19180515

OBJECTIVE: Osteoarthritis is characterized by an imbalance in cartilage homeostasis, which could potentially be corrected by mesenchymal stem cell (MSC)-based therapies. However, in vivo implantation of undifferentiated MSCs has led to unexpected results. This study was undertaken to establish a model for preconditioning of MSCs toward chondrogenesis as a more effective clinical tool for cartilage regeneration.

METHODS: A coculture preconditioning system was used to improve the chondrogenic potential of human MSCs and to study the detailed stages of chondrogenesis of MSCs, using a human MSC line, Kp-hMSC, in commitment cocultures with a human chondrocyte line, hPi (labeled with green fluorescent protein [GFP]). In addition, committed MSCs were seeded into a collagen scaffold and analyzed for their neocartilage-forming ability.

RESULTS: Coculture of hPi-GFP chondrocytes with Kp-hMSCs induced chondrogenesis, as indicated by the increased expression of chondrogenic genes and accumulation of chondrogenic matrix, but with no effect on osteogenic markers. The chondrogenic process of committed MSCs was initiated with highly activated chondrogenic adhesion molecules and stimulated cartilage developmental growth factors, including members of the transforming growth factor beta superfamily and their downstream regulators, the Smads, as well as endothelial growth factor, fibroblast growth factor, insulin-like growth factor, and vascular endothelial growth factor. Furthermore, committed Kp-hMSCs acquired neocartilage-forming potential within the collagen scaffold.

CONCLUSION: These findings help define the molecular markers of chondrogenesis and more accurately delineate the stages of chondrogenesis during chondrocytic differentiation of human MSCs. The results indicate that human MSCs committed to the chondroprogenitor stage of chondrocytic differentiation undergo detailed chondrogenic changes. This model of in vitro chondrogenesis of human MSCs represents an advance in cell-based transplantation for future clinical use.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19180515
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"