Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Organ-specific attenuation of murine hepatitis virus strain A59 by replacement of catalytic residues in the putative viral cyclic phosphodiesterase ns2.

The Murine hepatitis virus (MHV) strain A59 ns2 protein is a 30-kDa nonstructural protein that is expressed from a subgenomic mRNA in the cytoplasm of virus-infected cells. Its homologs are also encoded in other closely related group 2a coronaviruses and more distantly related toroviruses. Together, these proteins comprise a subset of a large superfamily of 2H phosphoesterase proteins that are distinguished by a pair of conserved His-x-Thr/Ser motifs encompassing catalytically important residues. We have used a vaccinia virus-based reverse genetic system to produce recombinant viruses encoding ns2 proteins with single-amino-acid substitutions in, or adjacent to, these conserved motifs, namely, inf-ns2 H46A, inf-ns2 S48A, inf-ns2-S120A, and inf-ns2-H126R. All of the mutant viruses replicate in mouse 17 clone 1 fibroblast cells and mouse embryonic cells to the same extent as the parental wild-type recombinant virus, inf-MHV-A59. However, compared to inf-MHV-A59, the inf-ns2 H46A and inf-ns2-H126R mutants are highly attenuated for replication in mouse liver following intrahepatic inoculation. Interestingly, none of the mutant viruses were attenuated for replication in mouse brain following intracranial inoculation. These results show that the ns2 protein of MHV-A59 has an important role in virus pathogenicity and that a substitution of the histidine residues of the MHV-A59 ns2 His-x-Thr/Ser motifs is critical for virus virulence in the liver but not in the brain. This novel phenotype suggests a strategy to investigate the function of the MHV-A59 ns2 protein involving the search for organ-specific proteins or RNAs that react differentially to wild-type and mutant ns2 proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app