Add like
Add dislike
Add to saved papers

Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells.

Previous investigations demonstrated that melatonin exerts an oncostatic action on estrogen-responsive breast cancer, both in vitro and in vivo. Nevertheless, the pro-apoptotic effect of melatonin is still a matter of debate. An experimental study was undertaken to focus on melatonin-related apoptosis and to identify the apoptotic pathways involved. Whole cell-count, flow-cytometry analysis and proteins involved in apoptotic pathways [p53, p73, murine double minute 2 (MDM2), caspases-9,-7,-6, cleaved-poly ADP ribose polymerase (PARP), Bcl-2, Bax and apoptotic inducing factor (AIF)] were investigated in human MCF-7 breast cancer cells treated with physiological (1 nM) concentration of melatonin. Melatonin exerts a significant growth-inhibitory effect on MCF-7 cells, becoming evident after 72 hr and thereafter increasing linearly up to 144 hr. In this model, the growth-inhibition is transforming growth factor beta 1 (TGFbeta1)-dependent and it might be reversed by adding an anti-TGFbeta1 antibody. Melatonin induces a significant rise in apoptotic rate, at both 24 and 96 hr. The anti-TGFbeta1 antibody almost completely suppresses melatonin-related late apoptosis; however, early apoptosis is unaffected. Early programmed cell death is associated with a significant increase in the p53/MDM2 ratio and in AIF release, without modifications in caspase activity or cleaved-PARP levels. Activated caspases-9 and -7 and cleaved-PARP increased significantly at 96 hr, concomitantly with a down-regulation of the Bcl-2/Bax ratio. These data suggest that two distinct apoptotic processes are triggered by melatonin in MCF-7 cells: an early, TGFbeta1 and caspase-independent response, and a late apoptotic TGFbeta1-dependent process in which activated-caspase-7 is likely to be the terminal effector.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app