Rewarding morphine-induced synaptic function of delta-opioid receptors on central glutamate synapses

Bihua Bie, Wei Zhu, Zhizhong Z Pan
Journal of Pharmacology and Experimental Therapeutics 2009, 329 (1): 290-6
The rewarding effect of opioids, the driving force for compulsive behaviors of opioid abuse and addiction, is primarily mediated by the mu-opioid receptor. However, the role of the delta-opioid receptor (DOR) in opioid reward and addiction is still poorly understood. The recently discovered adaptive DOR property of exocytotic translocation in sensory neurons after chronic opioid exposure provides a new avenue of conceptual thoughts to exploring the DOR function in this psychoneurological disease. In this study, we investigated potential adaptive function of DOR in neurons of the central nucleus of the amygdala (CeA), a forebrain structure increasingly recognized for mediating stimulus reward learning in drug addiction. Using whole-cell recordings in CeA slices, we found that in rats displaying morphine-induced behavior of conditioned place preference, a behavioral measure of drug reward, the overall synaptic strength of glutamate synapses in CeA neurons was significantly enhanced. The selective DOR agonist [D-Pen(2),D-Pen(5)]-enkephalin, having no apparent effect on glutamatergic excitatory postsynaptic current (EPSC) in neurons from control rats, produced a significant, dose-dependent inhibition of the synaptic current in neurons from those morphine-treated rats. Detailed analyses of EPSC properties revealed that DOR activation inhibited the EPSC by reducing presynaptic release of glutamate, indicating functional DOR emerging on presynaptic glutamate terminals. The morphine treatment also significantly increased DOR proteins in CeA preparations of synaptosomes. These findings provide functional evidence for an adaptive modulation by presynaptic DOR of a key synaptic activity altered by morphine, thus implying likely important involvement of DOR in opioid reward and addiction.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"