Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells.

TLRs are innate immune receptors that recognize pathogen-associated structures. Binding of ligands to different TLRs can induce the production of proinflammatory cytokines in a synergistic manner. We have analyzed the molecular mechanisms of synergy in TLR ligand-stimulated human monocyte-derived macrophages and dendritic cells (moDCs). Stimulation of moDCs with the TLR8 ligand together with the TLR3 or TLR4 ligand led to synergistic IL-6, IL-10, IL-12, and TNF-alpha mRNA expression and cytokine production. DNA-binding assays showed that TLR3 and TLR8 stimulation induced binding of multiple IFN regulatory factor (IRF) and STAT transcription factors to the IL-12p35 gene promoter IFN-stimulated response element in moDCs and macrophages but with different binding profiles and kinetics. We also demonstrate that NF-kappaB, MAPKs and PI-3K pathways have an important role in TLR-induced cytokine gene expression, as pharmacological inhibitors of these signaling pathways inhibited TLR3, TLR4, and TLR8 ligand-induced cytokine mRNA expression and protein production. Especially, synergistic IL-12p70 production was abolished completely in NF-kappaB, MAPK p38, and PI-3K inhibitor-treated moDCs. Our data suggest that TLR-dependent, synergistic cytokine gene expression results from enhanced activation and cooperation among NF-kappaB, IRF, MAPK, PI-3K, and STAT signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app