Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors

Wee-Soon Yeoh, Isaac Pek, Yi-Han Yong, Xiang Chen, Agustinus Borgy Waluyo
Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2008, 2008: 5184-7
This paper describes a new classification system for real-time monitoring of physical activity, which is able to detect body postures (lying, sitting, and standing) and walking speed with data acquired from three wearable biaxial accelerometer sensors deployed in a wireless body sensor network. One sensor is waist-mounted while the remaining two are attached to the respective thighs. Two studies were conducted for the evaluation of the system, with each study involving five human subjects. Results from the first study indicated an overall accuracy of 100% for classification of lying, sitting, standing, and walking across a series of 40 randomly chosen tasks. In our system, estimated walking speeds are used to distinguish between different types of movement activity (walking, jogging, and running), and the accuracy of its estimation was evaluated in our second study which gave an overall mean-square error (MSE) of 1.76 (km/h)(2).

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"