Add like
Add dislike
Add to saved papers

Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer.

Nano Letters 2009 Februrary
We demonstrate a bilayer photovoltaic device consisting of a heterojunction between colloidal cadmium selenide (CdSe) quantum dots (QDs) and a wide band gap organic hole-transporting thin film of N,N'-diphenyl-N,N'-bis(3-methylphenyl)[1,1'-biphenyl]-4,4'-diamine (TPD) molecules. The active light-absorbing film of QDs is nondestructively printed onto TPD using microcontact stamping. Indium-tin-oxide (ITO) provides the top contact. The resulting device structure can accommodate different size QDs, produces an exceptionally large open circuit voltage (0.8 V) for an architecture with symmetric electrodes, and yields an internal quantum efficiency of 10% at the first QD absorption peak.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app