JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Genetic and genomic dissection of maize root development and architecture.

The complex architecture and plasticity of the maize root system is controlled by a plethora of genes. Mutant analyses have identified genes regulating shoot-borne root initiation (RTCS) and root hair elongation (RTH1 and RTH3). Quantitative trait locus (QTL) studies have highlighted the importance of seminal roots, lateral roots, and root hairs in phosphorus acquisition. Additionally, QTLs that influence root features were shown to affect yield under different water regimes and under flooding conditions. Finally, proteome and transcriptome analyses provided insights into maize root development and identified candidate genes associated with cell specification, and lateral root initiation in pericycle cells. The targeted application of forward-genetics and reverse-genetics approaches will accelerate the unraveling of the functional basis of root development and architecture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app