Add like
Add dislike
Add to saved papers

Removal of methylene blue from colored effluents by adsorption on montmorillonite clay.

In this study, montmorillonite clay (MC) has been utilized as the adsorbent for the removal of a cationic dye, methylene blue (MB), from aqueous solution by the batch adsorption technique under different conditions of initial dye concentration, adsorbent concentration, contact time, solution pH, and temperature. Attempts were made to fit the isothermal data using Langmuir and Freundlich equations. The experimental results have demonstrated that the equilibrium data are fitted well by a Langmuir isotherm equation. Thermodynamic parameters such as the changes in enthalpy, entropy, and Gibbs' free energy were determined, showing adsorption to be an endothermic yet spontaneous process. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were considered to evaluate the rate parameters. The experimental data fitted the pseudo-second-order kinetic model, with an activation energy of +28.5 kJ mol(-1). The results indicate that MC adsorbs MB efficiently and could be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app