Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Changes in protein tyrosine phosphatase type IVA member 1 and zinc finger protein 36 C3H type-like 1 expression demonstrate altered estrogen and progestin effect in medroxyprogesterone acetate-resistant and estrogen-independent breast cancer cell models.

Steroids 2009 April
Estrogen stimulates proliferation in hormone-responsive breast cancer cells. Progestins inhibit the estrogen-mediated growth in these cells and are used in the treatment of mammary carcinomas. We applied cDNA microarray and real-time RT-PCR methods to reveal 17beta-estradiol- and medroxyprogesterone acetate (MPA)-regulated genes in MCF-7 breast cancer cells. We identified six genes, two of which were novel MPA and/or 17beta-estradiol-regulated genes: protein tyrosine phosphatase type IVA, member 1 (PTP4A1) and zinc finger protein 36, C3H type-like 1 (ZFP36L1). PTP4A1 expression was upregulated by 17beta-estradiol and this was opposed by MPA treatment of the cells. ZFP36L1 proved to be a direct target of MPA. Since MPA has also been shown to bind to glucocorticoid- and androgen receptors, we studied the regulation of the genes with progesterone, synthetic progestin R5020, dexamethasone and dihydrotestosterone. We also assessed the expression and hormonal regulation of PTP4A1 and ZFP36L1 mRNA in MCF-7-derived MPA-resistant and estrogen-independent sublines. The regulation of PTP4A1 expression upon 17beta-estradiol and combined 17beta-estradiol and MPA treatment was completely reversed in the estrogen-independent and MPA-resistant sublines, respectively. This study suggests an important role for PTP4A1 in cell growth, and shows that MPA may potentiate the effect of 17beta-estradiol in the MPA-resistant breast cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app