Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stability of barakol under hydrolytic stress conditions and its major degradation product.

Planta Medica 2009 March
The aim of the present study was to investigate the stability of barakol, an anxiolytic constituent extracted from leaves of Senna siamea (Lam.) Irwin & Barneby (syn. Cassia siamea Lam.), under the International Conference on Harmonisation suggested conditions using HPLC with photodiode array detection. Extensive degradation of barakol was found to occur under alkaline conditions through base-catalyzed hydrolysis. Mild degradation of barakol was observed under thermal and oxidative stress while it was stable under acidic conditions. The reaction rate constants (Kobs) of barakol degradation under alkaline conditions at pHs 12 and 13 were 3.0x10(-5) and 9.6x10(-3) min(-1), respectively. The activation energy according to the Arrhenius plot was calculated to be 26.9+/-3.3 kcal/mol at pH 13 and temperatures between 12 and 51 degrees C. The major degradation product of barakol under both alkaline and thermal stress conditions was characterized by LC-MS and NMR as cassiachromone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app