JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Kinetics and isotherms of Neutral Red adsorption on peanut husk.

Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was determined with the Langmuir and found to be 37.5 mg/g at 295 K. The adsorption kinetic data were modeled using the pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic equations. It was seen that the pseudo-first order and pseudo-second order kinetic equations could describe the adsorption kinetics. The intraparticle diffusion model was also used to express the adsorption process at the two-step stage. It was implied that peanut husk may be suitable as adsorbent material for adsorption of NR from aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app