JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Responses to 5-HT in morphologically identified neurons in the rat substantia gelatinosa in vitro.

Neuroscience 2009 March 4
Bath application of 5-HT (1-1000 muM) induced a tetrodotoxin (TTX)-resistant outward current at the holding membrane potential (V(H)) of -50 mV in 104/162 (64.2%) of substantia gelatinosa (SG) neurons from the rat spinal cord in vitro. The 5-HT-induced outward current was suppressed by an external solution containing Ba(2+), or a pipette solution containing Cs(2)SO(4) and tetraethylammonium. It was reversed near the equilibrium potential of the K(+) channel. The response to 5-HT was abolished 30 min after patch formation with a pipette solution containing guanosine-5-O-(2-thiodiphosphate)-S. The 5-HT-induced outward current was mimicked by a 5-HT(1A) agonist, (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide, and suppressed by a 5-HT(1A) antagonist, WAY100635, suggesting the 5HT(1A) receptor-mediated activation of K(+) channels in the outward current. In 11/162 (6.8%) SG neurons, 5-HT produced an inward current, which was mimicked by a 5-HT(3) agonist, 1-(m-chlorophenyl)-biguanide (mCPBG). The 5-HT-induced outward currents were observed in vertical cells (21/34) and small islet cells (11/34), while inward currents were induced in islet cells (1/5) and small islet (4/5) cells, but not in vertical cells. It is known that most vertical cells and islet cells in the SG are excitatory (glutamatergic) and inhibitory interneurons, respectively, while small islet cells consist of both excitatory and inhibitory neurons. Bath application of 5-HT or mCPBG increased the amplitude and the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), but no neurons showed a decrease in sIPSC. Furthermore, frequency, but not amplitude, of miniature IPSCs increased with perfusion with 5-HT in the presence of TTX. These findings, taken together, suggest that 5-HT induces outward currents through 5-HT(1A) receptors in excitatory SG neurons. These findings also suggest that the inward currents are post- and presynaptically evoked through 5-HT(3) receptors, probably in inhibitory neurons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app