JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles.

Analytical Chemistry 2009 Februrary 16
We have demonstrated the design of a new type fluorescent assay based on the inner filter effect (IFE) of metal nanoparticles (NPs), which is conceptually different from the previously reported metal NPs-based fluorescent assays. With a high extinction coefficient and tunable plasmon absorption feature, metal NPs are expected to be capable of functioning as a powerful absorber to tune the emission of the fluorophore in the IFE-based fluorescent assays. In this work, we presented two proof-of-concept examples based on the IFE of Au NPs by choosing MDMO-PPV as a model fluorophore, whose fluorescence could be tuned by the absorbance of Au NPs with a much higher sensitivity than the corresponding absorbance approach. While the first assay worked in a turn-on mode upon the etching of Au NPs by the analyte, CN(-), the second one functioned in a turn-off mode upon the catalytic growth of Au NPs by the analyte, H(2)O(2). As a result, the present IFE-based approach can detect cyanide ranging from 1.0 x 10(-6) to 6.0 x 10(-4) M with a detection limit of 6.0 x 10(-7) M and H(2)O(2) ranging from 1.5 x 10(-7) to 2.2 x 10(-5) M with a detection limit of 8.5 x 10(-8) M, respectively. Notably, the present IFE-based approach allows the design of fluorescent assays in a more simple, time-saving, and economical approach when compared with conventional metal NPs-based fluorescent assays, since no modification step of the fluorophore was needed any more.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app