Add like
Add dislike
Add to saved papers

The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2.

Some synthetic lipopeptides, in addition to native lipoproteins derived from both Gram-negative bacteria and mycoplasmas, are known to activate TLR2 (Toll-like receptor 2). However, the native lipoproteins inherent to Gram-positive bacteria, which function as TLR2 ligands, have not been characterized. Here, we have purified a native lipoprotein to homogeneity from Staphylococcus aureus to study as a native TLR2 ligand. The purified 33-kDa lipoprotein was capable of stimulating TLR2 and was identified as a triacylated SitC lipoprotein, which belongs to a family of ATP binding cluster (ABC) transporter substrate-binding proteins. Analyses of the SitC-mediated production of cytokine using mouse peritoneal macrophages revealed that the SitC protein (3 nm) induced the production of tumor necrosis factor-alpha and interleukin-6. Moreover, analysis of knock-out mice showed that SitC required TLR2 and MyD88, but not TLR1 or TLR6, for the induction of cytokines. In addition to the S. aureus SitC lipoprotein, we purified two other native ABC transporter substrate-binding lipoproteins from Bacillus subtilis and Micrococcus luteus, which were both shown to stimulate TLR2. These results demonstrate that S. aureus SitC lipoprotein is triacylated and that the ABC transporter substrate-binding lipoproteins of Gram-positive bacteria function as native ligands for TLR2.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app