Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The interaction of amyloid Abeta(1-40) with lipid bilayers and ganglioside as studied by 31P solid-state NMR.

Amyloid beta-peptide (Abeta) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. We analyzed the mode of interaction of Abeta with lipid bilayers by multinuclear NMR using (31)P nuclei. We found that Abeta (1-40) strongly perturbed the bilayer structure of dimyristoylphosphatidylcholine (DMPC), to form a non-lamellar phase (most likely micellar). The ganglioside GM1 potentiated the effect of Abeta (1-40), as viewed from (31)P NMR. The difference of the isotropic peak intensity between DMPC/Abeta and DMPC/GM1/Abeta suggests a specific interaction between Abeta and GM1. We show that in the DMPC/GM1/Abeta system there are three lipid phases, namely a lamellar phase, a hexagonal phase and non-oriented lipids. The latter two phases are induced by the presence of the Abeta peptide, and facilitated by GM1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app