Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Analysis of 50-y record of surface (137)Cs concentrations in the global ocean using the HAM-global database.

We investigated spatial and temporal variations in (137)Cs concentrations in the surface waters of the global ocean for the period from 1957 to 2005 using the "HAM database - a global version". Based on the 0.5-y average value of (137)Cs concentrations in the surface water in each sea area, we classified the temporal variations into four types. (1) In the North Pacific Ocean where there was high fallout from atmospheric nuclear weapons tests, the rates of decrease in the (137)Cs concentrations changed over the five decades: the rate of decrease from the 1950s to the 1970s was much faster than that after the 1970s, and the (137)Cs concentrations were almost constant after the 1990s. Latitudinal differences in (137)Cs concentrations in the North Pacific Ocean became small with time. (2) In the equatorial Pacific and Indian Oceans, the (137)Cs concentrations varied within a constant range in the 1970s and 1980s, suggesting the advection of (137)Cs from areas of high global fallout in the mid-latitudes of the North Pacific Ocean. (3) In the eastern South Pacific and Atlantic Oceans (south of 40 degrees S), the concentrations decreased exponentially over the five decades. (4) In the Arctic and North Atlantic Oceans, including marginal seas, (137)Cs concentrations were strongly controlled by discharge from nuclear reprocessing plants after the late 1970s. The apparent half-residence times of (137)Cs in the surface waters of the global ocean from 1970 to 2005 ranged from 4.5 to 36.8 years. The apparent half-residence times were longer in the equatorial region and shorter in the higher latitudes. There was no notable difference between the latitudinal distributions of the apparent half-residence times in the Pacific and Indian Oceans. These results suggest that (137)Cs in the North Pacific Ocean is transported to the equatorial, South Pacific, and Indian Oceans by the oceanic circulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app