JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Constitutive activation and targeted disruption of signal transducer and activator of transcription 3 (Stat3) in mouse epidermis reveal its critical role in UVB-induced skin carcinogenesis.

Oncogene 2009 Februrary 20
In this study, the potential role of Stat3 in UVB-induced skin carcinogenesis was examined using skin-specific gain and loss of function transgenic mice, that is, K5.Stat3C and K5Cre.Stat3(fl/fl) mice, respectively. The epidermis of Stat3-deficient mice was highly sensitive to UVB-induced apoptosis, whereas the epidermis of K5.Stat3C mice was more resistant to UVB-induced apoptosis. In particular, the status of Stat3 influenced the survival of ultraviolet-photoproduct cells, including those located in the hair follicles. K5.Stat3C mice exhibited significantly increased epidermal proliferation and hyperplasia in response to UVB irradiation, whereas Stat3-deficient mice showed reduced epidermal proliferation and hyperplasia. Expression of target genes regulated by Stat3, such as cyclin D1 and Bcl-x(L), was increased in epidermis of both control and UVB-irradiated K5.Stat3C mice, and downregulated in epidermis of both control and UVB-irradiated K5Cre.Stat3(fl/fl) mice. Following UVB irradiation, the formation of skin tumors in K5.Stat3C mice was accelerated and both the incidence and multiplicity of skin tumors were significantly greater than wild-type controls. In contrast, Stat3-deficient mice were resistant to UVB skin carcinogenesis. These results show that Stat3 plays an important role in the development of UVB-induced skin tumors through its effects on both survival and proliferation of keratinocytes during carcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app