Add like
Add dislike
Add to saved papers

Complexation of trivalent lanthanides with planar tridentate aromatic ligands tuned by counteranions and steric constraints.

Inorganic Chemistry 2009 Februrary 3
Among the plethora of parameters controlling the stability and structures of lanthanide coordination complexes, it is often difficult to decipher their relative importance in the global complexation processes. The combination of the bond valence method (for analyzing solid state structures) with the thermodynamic site binding model (for unravelling complexation reactions occurring in solution) appears to be an efficient tool for specifically addressing interligand effects, which affect the output of the coordination process. When applied to the reaction of the tridentate aromatic scaffolds 2,2':6',2''-terpyridine (L1) and 2,6-bis(benzimidazol-2-yl)pyridine (L2) with trivalent lanthanides, Ln(III), we demonstrate that the successive fixation of ligands, eventually leading to the triple-helical complexes [Ln(Lk)3]3+, is anticooperative both in the solid state and in solution, with a special sensitivity to the nature of the counteranion and to the peripheral substitution for L2. Consequently, in addition to the classical entropic driving forces resulting from the use of specific metal/ligand ratio, the stoichiometry of the final complex can be tuned by a judicious choice of interligand interactions, as exemplified by the unusual isolation of stable complexes with Ln/L = 2:3 ratios.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app