JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The combinations of polymorphisms in vitamin D receptor, osteoprotegerin and tumour necrosis factor superfamily member 11 genes are associated with bone mineral density.

1alpha,25-dihydroxyvitamin D(3) upregulates tumour necrosis factor superfamily member 11 (TNFSF11) that codes for the receptor activator of nuclear factor kappaB ligand (RANKL), and downregulates osteoprotegerin (OPG) expression. We have analyzed the individual effects of polymorphisms in the vitamin D receptor gene (VDR), OPG and TNFSF11, and searched for interactions between them. Six hundred and forty one subjects were evaluated: 239 osteoporotic and 228 non-osteoporotic post-menopausal, 57 pre-menopausal women and 117 elderly men. The subjects were genotyped for BsmI, FokI and Cdx2 in VDR, K3N in OPG and -290C>T, -643C>T and -693G>C in TNFSF11 gene. Bone mineral density (BMD) and biochemical markers were measured. In the osteoporotic women, femoral neck BMD (BMD-fn) showed associations with BsmI(VDR) and Cdx2(VDR) (P=0.015 and 0.047 respectively), and lumbar spine BMD (BMD-ls) with K3N(OPG) and -290C>T(TNFSF11) (P=0.021 and 0.017). No association with BMD was found in the non-osteoporotic women. In the pre-menopausal women, the Cdx2(VDR) polymorphism was associated with BMD-fn and total hip BMD (P=0.011 and 0.011). In elderly men, FokI(VDR) was associated with BMD-fn and BMD-ls (P=0.040 and 0.036). Interestingly, the -290C>T(TNFSF11)-K3N(OPG) combination was associated with BMD-th (P=0.041) in the osteoporotic women. In the non-osteoporotic women, the combination K3N(OPG)-Cdx2(VDR) was associated with BMD-ls, BMD-th and BMD-fn (P=0.032, 0.049 and 0.022), and the combination -290C>T(TNFSF11)-K3N(OPG) with BMD-fn (P=0.029). For the first time, the presence of gene-gene interactions between VDR, OPG and TNFSF11 genes was studied. Our results strongly suggest further confirmation of their combined influence on larger cohorts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app