JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings.

Obstructive sleep apnea syndrome (OSAS) is associated with cardiovascular morbidity as well as excessive daytime sleepiness and poor quality of life. In this study, we apply a machine learning technique [support vector machines (SVMs)] for automated recognition of OSAS types from their nocturnal ECG recordings. A total of 125 sets of nocturnal ECG recordings acquired from normal subjects (OSAS - ) and subjects with OSAS (OSAS +), each of approximately 8 h in duration, were analyzed. Features extracted from successive wavelet coefficient levels after wavelet decomposition of signals due to heart rate variability (HRV) from RR intervals and ECG-derived respiration (EDR) from R waves of QRS amplitudes were used as inputs to the SVMs to recognize OSAS +/- subjects. Using leave-one-out technique, the maximum accuracy of classification for 83 training sets was found to be 100% for SVMs using a subset of selected combination of HRV and EDR features. Independent test results on 42 subjects showed that it correctly recognized 24 out of 26 OSAS + subjects and 15 out of 16 OSAS - subjects (accuracy = 92.85%; Cohen's kappa value of 0.85). For estimating the relative severity of OSAS, the posterior probabilities of SVM outputs were calculated and compared with respective apnea/hypopnea index. These results suggest superior performance of SVMs in OSAS recognition supported by wavelet-based features of ECG. The results demonstrate considerable potential in applying SVMs in an ECG-based screening device that can aid a sleep specialist in the initial assessment of patients with suspected OSAS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app