Add like
Add dislike
Add to saved papers

Serial displacement chromatofocusing and its applications in multidimensional chromatography and gel electrophoresis: I. Theory and general considerations.

The technique of "serial displacement chromatofocusing" (SDC) is investigated both theoretically and experimentally with model mixtures of proteins and peptides. The method employs a multistep, retained pH gradient formed using adsorbed buffering species to produce a series of discrete effluent fractions. Each of these fractions may contain several displaced protein bands under conditions of sufficient mass overloading, so that several displacement trains of adjoined bands can be produced in a single chromatographic run. Numerical simulations and experimental results showed selective concentration effects for minor components in a fraction when the feed amount was sufficient large. A computer-aided design method was developed to facilitate the use of the method and was applied to both anion- and cation-exchange column packings. Good agreement was achieved between the designed pH gradients and experimental results. The characteristics of SDC were also explored in terms of its loading capacity, scalability, repeatability, recovery, and differentiation of proteins between their true and apparent isoelectric point values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app