JOURNAL ARTICLE

Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation

Michael J Passeri, Ayca Cinaroglu, Chuan Gao, Kirsten C Sadler
Hepatology: Official Journal of the American Association for the Study of Liver Diseases 2009, 49 (2): 443-52
19127516

UNLABELLED: Steatosis is the most common consequence of acute alcohol abuse and may predispose to more severe hepatic disease. Increased lipogenesis driven by the sterol response element binding protein (SREBP) transcription factors is essential for steatosis associated with chronic alcohol ingestion, but the mechanisms underlying steatosis following acute alcohol exposure are unknown. Zebrafish larvae represent an attractive vertebrate model for studying alcoholic liver disease (ALD), because they possess the pathways to metabolize alcohol, the liver is mature by 4 days post-fertilization (dpf), and alcohol can be simply added to their water. Exposing 4 dpf zebrafish larvae to 2% ethanol (EtOH) for 32 hours achieves approximately 80 mM intracellular EtOH and up-regulation of hepatic cyp2e1, sod, and bip, indicating that EtOH is metabolized and provokes oxidant stress. EtOH-treated larvae develop hepatomegaly and steatosis accompanied by changes in the expression of genes required for hepatic lipid metabolism. Based on the importance of SREBPs in chronic ALD, we explored the role of Srebps in this model of acute ALD. Srebp activation was prevented in gonzo larvae, which harbor a mutation in the membrane-bound transcription factor protease 1 (mbtps1) gene, and in embryos injected with a morpholino to knock down Srebp cleavage activating protein (scap). Both gonzo mutants and scap morphants were resistant to steatosis in response to 2% EtOH, and the expression of many Srebp target genes are down-regulated in gonzo mutant livers.

CONCLUSION: Zebrafish larvae develop signs of acute ALD, including steatosis. Srebp activation is required for steatosis in this model. The tractability of zebrafish genetics provides a valuable tool for dissecting the molecular pathogenesis of acute ALD.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19127516
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"