JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level.

Planta 2009 March
In many plant species, exposure to a prolonged period of low temperature during the winter promotes flowering in the spring, a process termed vernalization. In Arabidopsis, the vernalization requirement of winter annual ecotypes is caused by a MADS-box gene FLOWERING LOCUS C (FLC), which is a repressor of flowering gene. Here, a MADS-box gene was isolated from an early flowering trifoliate orange mutant (precocious trifoliate orange, Poncirus trifoliata L. Raf) by the RACE method combined with a cDNA library. Phylogenetic analysis reveals that the MADS-box gene is more closely related to the homologs of the FLOWERING LOCUS C lineage than to any of the other MIKC-type MADS-box lineages known from Arabidopsis. The expression profile of the MADS-box gene by real-time PCR showed upregulation of PtFLC during the winter, followed by a decrease in the spring and summer. This kind of cycling is contrary to the pattern observed in Arabidopsis. In situ hybridization reveals that the MADS-box gene is predominately expressed in the vegetative and reproductive meristems. In addition, five alternatively spliced transcripts of the MADS-box gene were also isolated at juvenile and adult mutant developmental stages. Expression analysis of these transcripts at different developmental stages indicated involvement of alternative splicing during phase change. The information suggests a complicated regulation mechanism in seasonal response and flower formation in perennial woody plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app