Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Evaluation of taxa-specific real-time PCR, whole-cell FISH and morphotaxonomy analyses for the detection and quantification of the toxic microalgae Alexandrium minutum (Dinophyceae), Global Clade ribotype.

The dinoflagellate genus Alexandrium contains neurotoxin-producing species that have adversely affected the aquaculture industry in many countries. The morphological similarity between Alexandrium species has led to the development of molecular methods for the discrimination, enumeration and monitoring of toxic and nontoxic species. A quantitative real-time PCR assay (qRT-PCR) targeting the internal transcribed spacer 1-5.8S rRNA gene using hybridization probe technology was developed for the potentially toxic species Alexandrium minutum (Global Clade) (GC). The assay was specific with a detection limit of less than one cell equivalent. The assay was used to detect and quantify A. minutum (GC) in seawater samples collected during summer 2007 in Cork Harbour, Ireland. The results were compared with those obtained using whole-cell FISH (WC-FISH) and morphotaxonomy analyses. Alexandrium minutum did not reach high bloom concentrations over the sampling period (maximum of c. 6 x 10(4) cells L(-1)), and the average concentrations determined using qRT-PCR, WC-FISH and morphotaxonomy did not significantly differ in eight of nine comparisons. Regression curves showed positive relationships between the methods; WC-FISH and qRT-PCR slightly under- and overestimated, respectively, the A. minutum concentrations compared with the morphotaxonomy method. The qRT-PCR assay for A. minutum (GC) offers high-throughput sample analysis and may prove suitable for implementation in microalgae monitoring programmes and assist in population dynamics studies of the species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app