JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Unlocking interpretation in near infrared multivariate calibrations by orthogonal partial least squares.

Analytical Chemistry 2009 January 2
Near infrared spectroscopy (NIR) was developed primarily for applications such as the quantitative determination of nutrients in the agricultural and food industries. Examples include the determination of water, protein, and fat within complex samples such as grain and milk. Because of its useful properties, NIR analysis has spread to other areas such as chemistry and pharmaceutical production. NIR spectra consist of infrared overtones and combinations thereof, making interpretation of the results complicated. It can be very difficult to assign peaks to known constituents in the sample. Thus, multivariate analysis (MVA) has been crucial in translating spectral data into information, mainly for predictive purposes. Orthogonal partial least squares (OPLS), a new MVA method, has prediction and modeling properties similar to those of other MVA techniques, e.g., partial least squares (PLS), a method with a long history of use for the analysis of NIR data. OPLS provides an intrinsic algorithmic improvement for the interpretation of NIR data. In this report, four sets of NIR data were analyzed to demonstrate the improved interpretation provided by OPLS. The first two sets included simulated data to demonstrate the overall principles; the third set comprised a statistically replicated design of experiments (DoE), to demonstrate how instrumental difference could be accurately visualized and correctly attributed to Wood's anomaly phenomena; the fourth set was chosen to challenge the MVA by using data relating to powder mixing, a crucial step in the pharmaceutical industry prior to tabletting. Improved interpretation by OPLS was demonstrated for all four examples, as compared to alternative MVA approaches. It is expected that OPLS will be used mostly in applications where improved interpretation is crucial; one such area is process analytical technology (PAT). PAT involves fewer independent samples, i.e., batches, than would be associated with agricultural applications; in addition, the Food and Drug Administration (FDA) demands "process understanding" in PAT. Both these issues make OPLS the ideal tool for a multitude of NIR calibrations. In conclusion, OPLS leads to better interpretation of spectrometry data (e.g., NIR) and improved understanding facilitates cross-scientific communication. Such improved knowledge will decrease risk, with respect to both accuracy and precision, when using NIR for PAT applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app