REVIEW
Add like
Add dislike
Add to saved papers

Therapeutic monoclonal antibodies in ophthalmology.

Monoclonal antibodies (mAbs) can be used therapeutically by binding to molecular targets with high specificity. Therefore, they have excellent therapeutic applications in ophthalmology. This manuscript presents four aspects of the therapeutic use of mAbs in ophthalmology: the scientific rationale, the unique characteristics of selected mAbs, the current state-of-the-art application, and relevant therapeutic mAbs for future applications in ophthalmology. We identified in the literature various single-agent therapies that inhibit the following targets: tumor necrosis factor (TNF), epithelial growth factor receptor, vascular endothelial growth factor (VEGF) receptor, basic fibroblast growth factor receptor, platelet-derived growth factor, and cluster of differentiation antigens. The roles of all biochemical targets in ocular diseases were evaluated. Current and future mAbs against various cytokines were assessed for the treatment of ocular diseases. The medical literature showed the clinical benefits of mAbs for treating angiogenic and inflammatory ocular diseases. Two anti-VEGF mAbs, bevacizumab and ranibizumab, and three anti-TNF agents, infliximab, etanercept, and adalimumab, control ocular neovascularization and intraocular inflammation. Other mAbs such as rituximab, daclizumab, efalizumab, and alemtuzumab showed positive results in animal and early clinical studies and may represent useful adjuvant therapies for ocular lymphoma or ocular inflammation. Ranibizumab is the only FDA-approved therapy; for other mAbs the so-called off-label application remains the standard. Intravenous administration of mAbs has demonstrated acceptable toxicity profiles, while intraocular injection may decrease the chances of systemic complications and increase the amount of drug available to the retina and choroid. In conclusion, effective clinical use of mAbs in ophthalmology is more commonly seen in the field of angiogenic vitreoretinal and autoimmune inflammatory diseases. The challenge for the future is combining biologic therapies to improve the quality and duration of responses while diminishing side effects. The role of mAbs within ophthalmic treatments will be defined according to future clinical experience and the results of randomized clinical trials.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app