JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cytochrome p-450 polymorphisms and response to clopidogrel.

BACKGROUND: Clopidogrel requires transformation into an active metabolite by cytochrome P-450 (CYP) enzymes for its antiplatelet effect. The genes encoding CYP enzymes are polymorphic, with common alleles conferring reduced function.

METHODS: We tested the association between functional genetic variants in CYP genes, plasma concentrations of active drug metabolite, and platelet inhibition in response to clopidogrel in 162 healthy subjects. We then examined the association between these genetic variants and cardiovascular outcomes in a separate cohort of 1477 subjects with acute coronary syndromes who were treated with clopidogrel in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis in Myocardial Infarction (TRITON-TIMI) 38.

RESULTS: In healthy subjects who were treated with clopidogrel, carriers of at least one CYP2C19 reduced-function allele (approximately 30% of the study population) had a relative reduction of 32.4% in plasma exposure to the active metabolite of clopidogrel, as compared with noncarriers (P<0.001). Carriers also had an absolute reduction in maximal platelet aggregation in response to clopidogrel that was 9 percentage points less than that seen in noncarriers (P<0.001). Among clopidogrel-treated subjects in TRITON-TIMI 38, carriers had a relative increase of 53% in the composite primary efficacy outcome of the risk of death from cardiovascular causes, myocardial infarction, or stroke, as compared with noncarriers (12.1% vs. 8.0%; hazard ratio for carriers, 1.53; 95% confidence interval [CI], 1.07 to 2.19; P=0.01) and an increase by a factor of 3 in the risk of stent thrombosis (2.6% vs. 0.8%; hazard ratio, 3.09; 95% CI, 1.19 to 8.00; P=0.02).

CONCLUSIONS: Among persons treated with clopidogrel, carriers of a reduced-function CYP2C19 allele had significantly lower levels of the active metabolite of clopidogrel, diminished platelet inhibition, and a higher rate of major adverse cardiovascular events, including stent thrombosis, than did noncarriers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app