Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Pharmacokinetic-pharmacodynamic model for the reversal of neuromuscular blockade by sugammadex.

Anesthesiology 2009 January
BACKGROUND: Sugammadex selectively binds steroidal neuromuscular blocking drugs, leading to reversal of neuromuscular blockade. The authors developed a pharmacokinetic-pharmacodynamic model for reversal of neuromuscular blockade by sugammadex, assuming that reversal results from a decrease of free drug in plasma and/or neuromuscular junction. The model was applied for predicting the interaction between sugammadex and rocuronium or vecuronium.

METHODS: Noninstantaneous equilibrium of rocuronium-sugammadex complex formation was assumed in the pharmacokinetic-pharmacodynamic interaction model. The pharmacokinetic parameters for the complex and sugammadex alone were assumed to be identical. After development of a pharmacokinetic-pharmacodynamic model for rocuronium alone, the interaction model was optimized using rocuronium and sugammadex concentration data after administration of 0.1-8 mg/kg sugammadex 3 min after administration of 0.6 mg/kg rocuronium. Subsequently, the predicted reversal of neuromuscular blockade by sugammadex was compared with data after administration of up to 8 mg/kg sugammadex at reappearance of second twitch of the train-of-four; or 3, 5, or 15 min after administration of 0.6 mg/kg rocuronium. Finally, the model was applied to predict reversal of vecuronium-induced neuromuscular blockade.

RESULTS: Using the in vitro dissociation constants for the binding of rocuronium and vecuronium to sugammadex, the pharmacokinetic-pharmacodynamic interaction model adequately predicted the increase in total rocuronium and vecuronium plasma concentrations and the time-course of reversal of neuromuscular blockade.

CONCLUSIONS: Model-based evaluation supports the hypothesis that reversal of rocuronium- and vecuronium-induced neuromuscular blockade by sugammadex results from a decrease in the free rocuronium and vecuronium concentration in plasma and neuromuscular junction. The model is useful for prediction of reversal of rocuronium and vecuronium-induced neuromuscular blockade with sugammadex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app